Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 934
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G567-G582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193168

RESUMO

The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.


Assuntos
Sistema Nervoso Entérico , Neurônios , Neurônios/fisiologia , Sistema Nervoso Entérico/fisiologia , Plexo Mientérico/fisiologia , Plexo Submucoso
2.
Science ; 382(6670): 527-528, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917691
3.
Neurogastroenterol Motil ; 35(4): e14538, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740821

RESUMO

BACKGROUND: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS: Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS: Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.


Assuntos
Plexo Mientérico , Neurônios , Humanos , Camundongos , Animais , Cobaias , Eletrofisiologia , Neurônios/fisiologia , Fluoresceínas , Plexo Mientérico/fisiologia , Colo/fisiologia
4.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R305-R316, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622086

RESUMO

Vagal preganglionic neurons innervate myenteric ganglia. These autonomic efferents are distributed so densely within the ganglia that it has been impractical to track individual vagal axons through the myenteric plexus with tracer labeling. To evaluate whether vagal efferent axons evidence selectivity, particularly for nitrergic or non-nitrergic myenteric neurons within the plexus, we limited the numbers and volumes of brainstem dextran biotin tracer injections per animal. Reduced labeling and the use of immunohistochemistry generated cases in which some individual axons could be distinguished and traced in three dimensions (Neurolucida) within and among successive (up to 46) myenteric ganglia. In the myenteric plexus of all stomach regions, the majority (∼86%) of vagal efferents were organized into two distinct subtypes. One subtype (∼24% of dextran-labeled efferents, designated "primarily nitrergic") selectively contacted and linked-both within and between ganglia-nitric oxide synthase positive (nNOS+) neurons into presumptive motor modules. A second subtype (∼62% of efferents, designated "primarily non-nitrergic") appeared to selectively contact and link-both within and between ganglia-non-nitrergic enteric neurons into a second type of effector ensemble. A third candidate type (∼14% of labeled preganglionics), appeared to lack "nitrergic selectivity" and to contact both nNOS+ and nNOS- enteric neurons. In addition to the quantitative assessment of the efferent axons in stomach, qualitative observations of the proximal duodenum indicated similar selective vagal efferent projections, in proportions comparable with those evaluated in the stomach. Limited injections of tracer, three-dimensional (3-D) tracing of individual axons, and histochemistry of myenteric neurons might distinguish additional efferent phenotypes.NEW & NOTEWORTHY The present study highlights the following: 1) one type of vagal efferent axon selectively innervates nitrergic upper gastrointestinal myenteric neurons; 2) a second type of vagal efferent selectively innervates non-nitrergic gastrointestinal myenteric neurons; and 3) the two types of vagal efferents might modulate peristalsis reciprocally and cooperatively.


Assuntos
Dextranos , Plexo Mientérico , Animais , Plexo Mientérico/fisiologia , Nervo Vago/fisiologia , Axônios , Neurônios
5.
Neurogastroenterol Motil ; 35(3): e14514, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480434

RESUMO

BACKGROUND: Gastrointestinal (GI) symptoms in heart failure (HF) patients are associated with increased morbidity and mortality. We hypothesized that HF reduces bioelectrical activity underlying peristalsis. In this study, we aimed to establish a method to capture and analyze slow waves (SW) in the small intestine in mice with HF. METHODS: We established a model of HF secondary to coronary artery disease in mice overexpressing tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells. The myoelectric activity was recorded from the small intestine in live animals under anesthesia. The low- and high-frequency components of SW were isolated in MATLAB and compared between the control (n = 12) and eTNAP groups (n = 8). C-kit-positive interstitial cells of Cajal (ICC) and Pgp9.5-positive myenteric neurons were detected by immunofluorescence. Myenteric ganglia were assessed by hematoxylin and eosin (H&E) staining. RESULTS: SW activity was successfully captured in vivo, with both high- and low-frequency components. Low-frequency component of SW was not different between endothelial TNAP (eTNAP) and control mice (mean[95% CI]: 0.032[0.025-0.039] vs. 0.040[0.028-0.052]). High-frequency component of SW showed a reduction eTNAP mice relative to controls (0.221[0.140-0.302] vs. 0.394[0.295-0.489], p < 0.01). Dysrhythmia was also apparent upon visual review of signals. The density of ICC and neuronal networks remained the same between the two groups. No significant reduction in the size of myenteric ganglia of eTNAP mice was observed. CONCLUSIONS: A method to acquire SW activity from small intestines in vivo and isolate low- and high-frequency components was established. The results indicate that HF might be associated with reduced high-frequency SW activity.


Assuntos
Insuficiência Cardíaca , Células Intersticiais de Cajal , Camundongos , Animais , Células Endoteliais , Intestino Delgado/fisiologia , Peristaltismo , Células Intersticiais de Cajal/fisiologia , Plexo Mientérico/fisiologia
6.
Nutr Neurosci ; 25(4): 758-770, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33034260

RESUMO

Objective: Possible effects of the vagus inhibition and stimulation on the hypothalamic nuclei, myenteric plexes and the vagus nerve were investigated.Methods: The female rats divided to the inhibition (INH), stimulation (STI) and, sham (SHAM) groups were fed with high fat diet (including 40% of energy from animal fat). After nine weeks, the rats were allowed to recover for 4 weeks in INH group. In STI group, the left vagus nerve stimulated (30 Hz/500 msn/30 sec.) starting 2nd post operative day for 5 minutes during 4 weeks. Healthy female rats used as control (CONT). Then, tissue samples were analyzed by biochemical, histological and stereological methods.Results: The mean number of the neurons in the arcuate nucleus of the INH group was significantly less; but, that is significantly more in the STI group compared to the other groups. The neuronal density of ventromedial nucleus in the STI group was higher; while the density in the INH group was lower than the other groups. In the dorsomedial nucleus, neuron density of the INH group was lower than the other groups. In terms of the myenteric plexus volumes, that of the INH group was lowest. The myelinated axon number in the INH group was significantly highest. The myelin sheath thickness and axon area of the INH group was significantly lower than the other groups.Discussion: The results of the study show that the vagal inhibition is more effective than the vagal stimulation on the weight loss in the obesity.


Assuntos
Obesidade , Nervo Vago , Animais , Feminino , Hipotálamo , Plexo Mientérico/fisiologia , Obesidade/terapia , Ratos , Estômago
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593632

RESUMO

Glia in the central nervous system exert precise spatial and temporal regulation over neural circuitry on a synapse-specific basis, but it is unclear if peripheral glia share this exquisite capacity to sense and modulate circuit activity. In the enteric nervous system (ENS), glia control gastrointestinal motility through bidirectional communication with surrounding neurons. We combined glial chemogenetics with genetically encoded calcium indicators expressed in enteric neurons and glia to study network-level activity in the intact myenteric plexus of the proximal colon. Stimulation of neural fiber tracts projecting in aboral, oral, and circumferential directions activated distinct populations of enteric glia. The majority of glia responded to both oral and aboral stimulation and circumferential pathways, while smaller subpopulations were activated only by ascending and descending pathways. Cholinergic signaling functionally specifies glia to the descending circuitry, and this network plays an important role in repressing the activity of descending neural pathways, with some degree of cross-inhibition imposed upon the ascending pathway. Glial recruitment by purinergic signaling functions to enhance activity within ascending circuit pathways and constrain activity within descending networks. Pharmacological manipulation of glial purinergic and cholinergic signaling differentially altered neuronal responses in these circuits in a sex-dependent manner. Collectively, our findings establish that the balance between purinergic and cholinergic signaling may differentially control specific circuit activity through selective signaling between networks of enteric neurons and glia. Thus, enteric glia regulate the ENS circuitry in a network-specific manner, providing profound insights into the functional breadth and versatility of peripheral glia.


Assuntos
Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Plexo Mientérico/fisiologia , Neuroglia/fisiologia , Animais , Comunicação Celular , Sistema Nervoso Entérico/citologia , Feminino , Masculino , Camundongos , Plexo Mientérico/citologia , Neuroglia/citologia , Neurônios/citologia , Transdução de Sinais
8.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G426-G435, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468219

RESUMO

Digestive functions of the colon depend on sensory-motor reflexes in the enteric nervous system (ENS), initiated by intrinsic primary afferent neurons (IPANs). IPAN terminals project to the mucosal layer of the colon, allowing communication with epithelial cells comprising the colon lining. The chemical nature and functional significance of this epithelial-neural communication in regard to secretion and colon motility are of high interest. Colon epithelial cells can produce and release neuroactive substances such as ATP and 5-hydroxytryptamine (5-HT), which can activate receptors on adjacent nerve fibers, including IPAN subtypes. In this study, we examined if stimulation of epithelial cells alone is sufficient to activate neural circuits that control colon motility. Optogenetics and calcium imaging were used in ex vivo preparations of the mouse colon to selectively stimulate the colon epithelium, measure changes in motility, and record activity of neurons within the myenteric plexus. Light-mediated activation of epithelial cells lining the distal, but not proximal, colon caused local contractions and increased the rate of colonic migrating motor complexes. Epithelial-evoked local contractions in the distal colon were reduced by both ATP and 5-HT receptor antagonists. Our findings indicate that colon epithelial cells likely use purinergic and serotonergic signaling to initiate activity in myenteric neurons, produce local contractions, and facilitate large-scale coordination of ENS activity responsible for whole colon motility patterns.NEW & NOTEWORTHY Using an all-optical approach to measure real-time cell-to-cell communication responsible for colon functions, we show that selective optogenetic stimulation of distal colon epithelium produced activity in myenteric neurons, as measured with red genetically encoded calcium indicators. The epithelial-induced neural response led to local contractions, mediated by both purinergic and serotonergic signaling, and facilitated colonic motor complexes that propagate from proximal to distal colon.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Mucosa Intestinal/fisiologia , Plexo Mientérico/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio , Colo/metabolismo , Feminino , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Contração Muscular , Plexo Mientérico/metabolismo , Optogenética , Serotonina/metabolismo
9.
Neurogastroenterol Motil ; 33(12): e14186, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121274

RESUMO

BACKGROUND: Gastrointestinal (GI) function is critically dependent on the control of the enteric nervous system (ENS), which is situated within the gut wall and organized into two ganglionated nerve plexuses: the submucosal and myenteric plexus. The ENS is optimally positioned and together with the intestinal epithelium, is well-equipped to monitor the luminal contents such as microbial metabolites and to coordinate appropriate responses accordingly. Despite the heightened interest in the gut microbiota and its influence on intestinal physiology and pathophysiology, how they interact with the host ENS remains unclear. METHODS: Using full-thickness proximal colon preparations from transgenic Villin-CreERT2;R26R-GCaMP3 and Wnt1-Cre;R26R-GCaMP3 mice, which express a fluorescent Ca2+ indicator in their intestinal epithelium or in their ENS, respectively, we examined the effects of key luminal microbial metabolites (SCFAs and 5-HT) on the mucosa and underlying enteric neurons. KEY RESULTS: We show that the SCFAs acetate, propionate, and butyrate, as well as 5-HT can, to varying extents, acutely elicit epithelial and neuronal Ca2+ responses. Furthermore, SCFAs exert differential effects on submucosal and myenteric neurons. Additionally, we found that submucosal ganglia are predominantly aligned along the striations of the transverse mucosal folds in the proximal colon. CONCLUSIONS & INFERENCES: Taken together, our study demonstrates that different microbial metabolites, including SCFAs and 5-HT, can acutely stimulate Ca2+ signaling in the mucosal epithelium and in enteric neurons.


Assuntos
Colo/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serotonina/farmacologia , Animais , Cálcio/metabolismo , Colo/inervação , Colo/metabolismo , Feminino , Masculino , Camundongos , Plexo Mientérico/metabolismo , Plexo Mientérico/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
10.
Methods Mol Biol ; 2311: 63-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033078

RESUMO

In the enteric nervous system, there exist a huge number of local intrinsic neurons, which control the gastrointestinal functions. Culture of enteric neurons provides a good model system for physiological, electrophysiological, and pharmacological studies. Here, we describe two methods to obtain sufficient enteric neurons from mouse myenteric plexuses by directly culturing primary neurons or inducing neuronal differentiation of enteric neural stem/progenitor cells.


Assuntos
Intestino Delgado/inervação , Plexo Mientérico/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Separação Celular , Células Cultivadas , Camundongos , Plexo Mientérico/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenótipo , Cultura Primária de Células
11.
Gastroenterology ; 160(4): 1208-1223.e4, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32980343

RESUMO

BACKGROUND & AIMS: The colon is innervated by intrinsic and extrinsic neurons that coordinate functions necessary for digestive health. Sympathetic input suppresses colon motility by acting on intrinsic myenteric neurons, but the extent of sympathetic-induced changes on large-scale network activity in myenteric circuits has not been determined. Compounding the complexity of sympathetic function, there is evidence that sympathetic transmitters can regulate activity in non-neuronal cells (such as enteric glia and innate immune cells). METHODS: We performed anatomical tracing, immunohistochemistry, optogenetic (GCaMP calcium imaging, channelrhodopsin), and colon motility studies in mice and single-cell RNA sequencing in human colon to investigate how sympathetic postganglionic neurons modulate colon function. RESULTS: Individual neurons in each sympathetic prevertebral ganglion innervated the proximal or distal colon, with processes closely opposed to multiple cell types. Calcium imaging in semi-intact mouse colon preparations revealed changes in spontaneous and evoked neural activity, as well as activation of non-neuronal cells, induced by sympathetic nerve stimulation. The overall pattern of response to sympathetic stimulation was unique to the proximal or distal colon. Region-specific changes in cellular activity correlated with motility patterns produced by electrical and optogenetic stimulation of sympathetic pathways. Pharmacology experiments (mouse) and RNA sequencing (human) indicated that appropriate receptors were expressed on different cell types to account for the responses to sympathetic stimulation. Regional differences in expression of α-1 adrenoceptors in human colon emphasize the translational relevance of our mouse findings. CONCLUSIONS: Sympathetic neurons differentially regulate activity of neurons and non-neuronal cells in proximal and distal colon to promote distinct changes in motility patterns, likely reflecting the distinct roles played by these 2 regions.


Assuntos
Colo/inervação , Gânglios Simpáticos/fisiologia , Motilidade Gastrointestinal/fisiologia , Plexo Mientérico/fisiologia , Animais , Colo/citologia , Colo/efeitos dos fármacos , Colo/fisiologia , Feminino , Gânglios Simpáticos/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Guanetidina/farmacologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/inervação , Mucosa Intestinal/fisiologia , Masculino , Camundongos , Modelos Animais , Plexo Mientérico/citologia , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Optogenética , Prazosina/farmacologia , RNA-Seq , Análise de Célula Única , Ioimbina/farmacologia
12.
Gastroenterology ; 159(1): 200-213.e8, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234538

RESUMO

BACKGROUND & AIMS: The enteric nervous system (ENS) exists in close proximity to luminal bacteria. Intestinal microbes regulate ENS development, but little is known about their effects on adult enteric neurons. We investigated whether intestinal bacteria or their products affect the adult ENS via toll-like receptors (TLRs) in mice. METHODS: We performed studies with conventional C57/BL6, germ-free C57/BL6, Nestin-creERT2:tdTomato, Nestin-GFP, and ChAT-cre:tdTomato. Mice were given drinking water with ampicillin or without (controls). Germ-free mice were given drinking water with TLR2 agonist or without (controls). Some mice were given a blocking antibody against TLR2 or a TLR4 inhibitor. We performed whole gut transit, bead latency, and geometric center studies. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing. Longitudinal muscle myenteric plexus (LMMP) tissues were collected, analyzed by immunohistochemistry, and levels of nitric oxide were measured. Cells were isolated from colonic LMMP of Nestin-creERT2:tdTomato mice and incubated with agonists of TLR2 (receptor for gram-positive bacteria), TLR4 (receptor for gram-negative bacteria), or distilled water (control) and analyzed by flow cytometry. RESULTS: Stool from mice given ampicillin had altered composition of gut microbiota with reduced abundance of gram-positive bacteria and increased abundance of gram-negative bacteria, compared with mice given only water. Mice given ampicillin had reduced colon motility compared with mice given only water, and their colonic LMMP had reduced numbers of nitrergic neurons, reduced neuronal nitric oxide synthase production, and reduced colonic neurogenesis. Numbers of colonic myenteric neurons increased after mice were switched from ampicillin to plain water, with increased markers of neurogenesis. Nestin-positive enteric neural precursor cells expressed TLR2 and TLR4. In cells isolated from the colonic LMMP, incubation with the TLR2 agonist increased the percentage of neurons originating from enteric neural precursor cells to approximately 10%, compared with approximately 0.01% in cells incubated with the TLR4 agonist or distilled water. Mice given an antibody against TLR2 had prolonged whole gut transit times; their colonic LMMP had reduced total neurons and a smaller proportion of nitrergic neurons per ganglion, and reduced markers of neurogenesis compared with mice given saline. Colonic LMMP of mice given the TLR4 inhibitor did not have reduced markers of neurogenesis. Colonic LMMP of germ-free mice given TLR2 agonist had increased neuronal numbers compared with control germ-free mice. CONCLUSIONS: In the adult mouse colon, TLR2 promotes colonic neurogenesis, regulated by intestinal bacteria. Our findings indicate that colonic microbiota help maintain the adult ENS via a specific signaling pathway. Pharmacologic and probiotic approaches directed towards specific TLR2 signaling processes might be developed for treatment of colonic motility disorders related to use of antibiotics or other factors.


Assuntos
Disbiose/fisiopatologia , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/fisiologia , Neurogênese/fisiologia , Receptor 2 Toll-Like/metabolismo , Adulto , Ampicilina/administração & dosagem , Ampicilina/efeitos adversos , Animais , Células Cultivadas , Colo/inervação , Colo/microbiologia , Colo/fisiologia , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Vida Livre de Germes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Plexo Mientérico/citologia , Plexo Mientérico/fisiologia , Nestina/genética , Neurogênese/efeitos dos fármacos , Neurônios Nitrérgicos/fisiologia , Óxido Nítrico/metabolismo , Cultura Primária de Células , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
13.
J Cell Mol Med ; 24(6): 3399-3406, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31983076

RESUMO

Telocytes (TCs) are recently described interstitial cells, present in almost all human organs. Among many other functions, TCs regulate gastrointestinal motility together with the interstitial cells of Cajal (ICCs). TCs and ICCs have close localization in the human myenteric plexus; however, the exact spatial relationship cannot be clearly examined by previously applied double immunofluorescence/confocal microscopy. Data on TCs and submucosal ganglia and their relationship to intestinal nerves are scarce. The aim of the study was to analyse the spatial relationship among these components in the normal human ileum and colon with double CD34/CD117 and CD34/S100 immunohistochemistry and high-resolution light microscopy. TCs were found to almost completely encompass both myenteric and submucosal ganglia in ileum and colon. An incomplete monolayer of ICCs was localized between the TCs and the longitudinal muscle cells in ileum, whereas only scattered ICCs were present on both surfaces of the colonic myenteric ganglia. TC-telopodes were observed within colonic myenteric ganglia. TCs, but no ICCs, were present within and around the interganglionic nerve fascicles, submucosal nerves and mesenterial nerves, but were only observed along small nerves intramuscularly. These anatomic differences probably reflect the various roles of TCs and ICCs in the bowel function.


Assuntos
Colo/anatomia & histologia , Sistema Nervoso Entérico/citologia , Íleo/anatomia & histologia , Células Intersticiais de Cajal/fisiologia , Telócitos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Colo/citologia , Colo/inervação , Feminino , Humanos , Íleo/citologia , Íleo/inervação , Masculino , Pessoa de Meia-Idade , Plexo Mientérico/fisiologia , Peristaltismo/fisiologia
14.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G225-G243, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31813235

RESUMO

The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are a network of coupled oscillators in the small intestine that generate rhythmic electrical phase waves leading to corresponding waves of contraction, yet rhythmic action potentials and intercellular calcium waves have been recorded from c-kit-mutant mice that lack the ICC-MP, suggesting that there may be a second pacemaker network. The gap junction blocker carbenoxolone induced a "pinstripe" motor pattern consisting of rhythmic "stripes" of contraction that appeared simultaneously across the intestine with a period of ~4 s. The infinite velocity of these stripes suggested they were generated by a coupled oscillator network, which we call X. In c-kit mutants rhythmic contraction waves with the period of X traveled the length of the intestine, before the induction of the pinstripe pattern by carbenoxolone. Thus X is not the ICC-MP and appears to operate under physiological conditions, a fact that could explain the viability of these mice. Individual stripes consisted of a complex pattern of bands of contraction and distension, and between stripes there could be slide waves and v waves of contraction. We hypothesized that these phenomena result from an interaction between X and the circular muscle that acts as a damped oscillator. A mathematical model of two chains of coupled Fitzhugh-Nagumo systems, representing X and circular muscle, supported this hypothesis. The presence of a second coupled oscillator network in the small intestine underlines the complexity of motor pattern generation in the gut.NEW & NOTEWORTHY Physiological experiments and a mathematical model indicate a coupled oscillator network in the small intestine in addition to the c-kit-expressing myenteric interstitial cells of Cajal. This network interacts with the circular muscle, which itself acts as a system of damped oscillators, to generate physiological contraction waves in c-kit (W) mutant mice.


Assuntos
Motilidade Gastrointestinal/fisiologia , Células Intersticiais de Cajal/fisiologia , Plexo Mientérico/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Carbenoxolona/farmacologia , Feminino , Intestino Delgado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Modelos Teóricos , Contração Muscular , Músculo Liso Vascular/efeitos dos fármacos , Mutação , Junção Neuromuscular , Proteínas Proto-Oncogênicas c-kit/genética
16.
Brain Res ; 1708: 1-9, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500400

RESUMO

Diabetes mellitus (DM) may lead to gastrointestinal motility disorders. Rodent models of DM indicate the presence of morpho-functional abnormalities of the enteric nervous system. Here, we evaluated whether experimental DM can cause changes in the excitatory cholinergic fibers, neuronal density, and voltage-gated sodium channel (Nav) expression in the myenteric plexus of the ileum. After streptozotocin-induced hyperglycemia in female rats progressed for eight weeks, triple immunofluorescence labeling experiments revealed that the neuronal density in DM rats was significantly lower than that in control. On average, the density of total neurons reduced by 52.2% (p = 0.0001), cholinergic neurons by 50.0% (p = 0.0068), and nitrergic neurons by 54.8% (p = 0.0042). The number of neurons per ganglionic area was also significantly reduced (to 28.2% of total neurons, p = 0.0002; 27.7% of cholinergic neurons, p = 0.0002, and 32.1% of nitrergic neurons, p = 0.0016). Furthermore, the density of the cholinergic fibers at the surface of the longitudinal muscle was significantly reduced (DM: 24 ±â€¯3%; p = 0.003, control: 41 ±â€¯2%); however, western-blot analysis did not indicate a reduction in the expression of choline acetyltransferase (ChAT) in the DM group. The Nav1.6 isoform was detected in different myenteric neurons of the ileum. RT-qPCR data did not suggest an alteration of transcripts for ChAT, neuronal nitric oxide synthase, Nav1.3, Nav1.6, or Nav1.7. Our data support the view that chronic DM leads to a reduction of excitatory cholinergic fibers and neuronal density. However, changes in sodium channel expression pattern, which could cause neuronal dysfunction, were not detected.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Sistema Nervoso Entérico/metabolismo , Plexo Mientérico/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Sistema Nervoso Entérico/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Íleo/inervação , Íleo/metabolismo , Plexo Mientérico/metabolismo , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/genética , Canais de Sódio/metabolismo , Estreptozocina/farmacologia
17.
Acta Physiol (Oxf) ; 225(4): e13223, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30466198

RESUMO

AIM: Our earlier studies showed that mechanical stretch activates inhibitory motor neurons of the oesophagus; however, the underlying molecular mechanisms are unclear. Here, we sought to examine if Na+ /Ca2+ exchanger 1 (NCX1) is responsible for the mechanosensitivity in the esophageal myenteric neurons (EMN) of rats and humans. METHODS: The function of NCX1 in primary culture of neurons was determined using calcium imaging, and mechanosensitivity was tested using osmotic stretch and direct mechanical stretch. Axial stretch-induced relaxation of the lower esophageal sphincter (LES) was also studied in vivo in rats. RESULTS: The expression and co-localization of NCX1 with nNOS were identified in the EMN from both rats and humans. The extracellular Ca2+ entry caused by ATP through purinergic signalling in the rat EMN was significantly inhibited by selective NCX blockers. Removal of extracellular Na+ to activate the Ca2+ entry mode of NCX1 induced an increase in the cytoplasmic calcium ([Ca2+ ]cyt ), which was attenuated by NCX blockers. Osmotic stretch and mechanical stretch-induced [Ca2+ ]cyt signalling in the rat and human EMN were attenuated by NCX blockers as well as specific NCX1 knockdown. Osmotic stretch and mechanical stretch also induced [Ca2+ ]cyt signalling in the Chinese hamster ovary (CHO) cells with NCX1 over-expression, which was attenuated by NCX blockers. Finally, NCX blockade inhibited axial stretch-activated LES relaxation in vivo experiments in the rats. CONCLUSIONS: We demonstrate a novel NCX1/Ca2+ pathway in the mechanosensitive neurons of rat and human oesophagus, which may provide a potential therapeutic target for the treatment of oesophageal motility disorders.


Assuntos
Mecanotransdução Celular , Plexo Mientérico/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Humanos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G32-G44, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335474

RESUMO

In the guinea pig distal colon, nonpropulsive neurally mediated motor patterns have been observed in different experimental conditions. Isolated segments of guinea pig distal colon were used to investigate these neural mechanisms by simultaneously recording wall motion, intraluminal pressure, and smooth muscle electrical activity in different conditions of constant distension and in response to pharmacological agents. Three distinct neurally dependent motor patterns were identified: transient neural events (TNEs), cyclic motor complexes (CMC), and distal colon migrating motor complexes (DCMMC). These could occur simultaneously and were distinguished by their electrophysiological, mechanical, and pharmacological features. TNEs occurred at irregular intervals of ~3s, with bursts of action potentials at 9 Hz. They propagated orally at 12 cm/s via assemblies of ascending cholinergic interneurons that activated final excitatory and inhibitory motor neurons, apparently without involvement of stretch-sensitive intrinsic primary afferent neurons. CMCs occurred during maintained distension and consisted of clusters of closely spaced TNEs, which fused to cause high-frequency action potential firing at 7 Hz lasting ~10 s. They generated periodic pressure peaks mediated by stretch-sensitive intrinsic primary afferent neurons and by cholinergic interneurons. DCMMCs were generated by ongoing activity in excitatory motor neurons without apparent involvement of stretch-sensitive neurons, cholinergic interneurons, or inhibitory motor neurons. In conclusion, we have identified three distinct motor patterns that can occur concurrently in the isolated guinea pig distal colon. The mechanisms underlying the generation of these neural patterns likely involve recruitment of different populations of enteric neurons with distinct temporal activation properties.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Músculo Liso/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Potenciais de Ação/fisiologia , Animais , Cobaias , Neurônios Motores/fisiologia , Plexo Mientérico/fisiologia , Neurogênese/fisiologia
19.
Neuroscience ; 372: 213-224, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29317262

RESUMO

Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.


Assuntos
Mecanorreceptores/fisiologia , Plexo Mientérico/fisiologia , Potenciais de Ação , Animais , Fenômenos Biomecânicos , Células Cultivadas , Cobaias , Hidrodinâmica , Intestino Delgado , Masculino , Mecanorreceptores/citologia , Plexo Mientérico/citologia , Estimulação Física , Estresse Mecânico , Estresse Fisiológico/fisiologia , Imagens com Corantes Sensíveis à Voltagem
20.
J Clin Endocrinol Metab ; 103(2): 575-585, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177486

RESUMO

Context: Glucagon-like peptide-1 (GLP-1) secretion from l-cells and postprandial inhibition of gastrointestinal motility. Objective: Investigate whether physiological plasma concentrations of GLP-1 inhibit human postprandial motility and determine mechanism of action of GLP-1 and analog ROSE-010 action. Design: Single-blind parallel study. Setting: University hospital laboratory. Participants: Healthy volunteers investigated with antroduodenal manometry. Human gastric and intestinal muscle strips. Interventions: Motility indices (MIs) obtained before and during GLP-1 or saline infusion. Plasma GLP-1 and glucagon-like peptide-2 (GLP-2) measured by radioimmunoassay. Gastrointestinal muscle strips investigated for GLP-1- and ROSE-010-induced relaxation employing GLP-1 and GLP-2 and their receptor localization, and blockers exendin(9-39)amide, Lω-nitro-monomethylarginine (L-NMMA), 2',5'-dideoxyadenosine (DDA), and tetrodotoxin (TTX) to reveal target mechanism of GLP-1 action. Main Outcome Measures: Postprandial gastrointestinal relaxation by GLP-1. Results: In humans, food intake increased MI to 6.4 ± 0.3 (antrum), 5.7 ± 0.4 (duodenum), and 5.9 ± 0.2 (jejunum). GLP-1 administered intravenously raised plasma GLP-1, but not GLP-2. GLP-1 0.7 pmol/kg/min suppressed corresponding MI to 4.6 ± 0.2, 4.7 ± 0.4, and 5.0 ± 0.2, whereas 1.2 pmol/kg/min suppressed MI to 5.4 ± 0.2, 4.4 ± 0.3, and 5.4 ± 0.3 (P < 0.0001 to 0.005). In vitro, GLP-1 and ROSE-010 prevented contractions by bethanechol and electric field stimulation (P < 0.005 to 0.05). These effects were disinhibited by exendin(9-39)amide, L-NMMA, DDA, or TTX. GLP-1 and GLP-2 were localized to epithelial cells, GLP-1 also at myenteric neurons. GLP-1R and GLP-2R were localized at myenteric neurons but not muscle. Conclusions: GLP-1 and ROSE-010 inhibit postprandial gastrointestinal motility through GLP-1R at myenteric neurons, involving nitrergic and cyclic adenosine monophosphate-dependent mechanisms.


Assuntos
Motilidade Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Plexo Mientérico/efeitos dos fármacos , Adolescente , Adulto , Duodeno/efeitos dos fármacos , Esvaziamento Gástrico/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Voluntários Saudáveis , Humanos , Masculino , Manometria , Pessoa de Meia-Idade , Plexo Mientérico/fisiologia , Fragmentos de Peptídeos/farmacologia , Antro Pilórico/efeitos dos fármacos , Método Simples-Cego , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...